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Decision Procedures

Definition

◦ Algorithm to determine whether a formula φ (in a first-order theory T ) is
satisfiable.

Examples

◦ Congruence closure: for quantifier-free formulas, uninterpreted functions
◦ Simplex methods for quantifier-free linear arithmetic
◦ Cylindrical algebraic decomposition for real closed fields

More useful versions

◦ Decision procedures for combinations of theories:

2.car(x)− 3.cdr(x) = f (cdr(x)) ⇒
g(cons(4.car(x)− 2.f (cdr(x)), y)) = g(cons(6.cdr(x)), y)

◦ Example: the decision procedures of PVS (based on Shostak)
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Dealing with Boolean Structure

Many decision procedures (e.g., congruence closure, simplex) work on
conjunctions of literals

They can still be applied to arbitrary formula φ. For example, write φ in DNF:

(a11 ∧ . . . ∧ a1n) ∨ . . . ∨ (am1 ∧ . . . ∧ amp)

Problem: this is highly inefficient

◦ DNF can explode
◦ If several conjuncts share identical literals, we prove the same thing many time:

(f (x, y) 6= f (y, x) ∧ z = 3x + 1 ∧ x = y ∧ z < 0) ∨
(t > g(y) ∧ x = y ∧ z + 3 6 0 ∧ f (x, y) 6= f (y, x)) ∨ . . .

Better approach: use a Boolean SAT solver to enumerate the conjuncts

◦ This is done by tools called Satisfiability Modulo Theory (SMT) Solvers
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Naı̈ve SMT Solving

x + y > 0 ∧ (x = z ⇒ z + y = −1) ∧ z > 3t

1) Replace atoms by boolean variables

a 7→ x + y > 0 b 7→ x = z

c 7→ z + y = −1 d 7→ z > 3t

2) Ask for a model of a ∧ (b ⇒ c) ∧ d using a SAT solver

◦ Boolean model: {a, b, c, d}
◦ Convert the model back to arithmetic

x + y > 0 ∧ x = z ∧ z + y = −1 ∧ z > 3t

and check its consistency
Answer: not consistent
Explanation: Arithmetic |= ¬(x + y > 0 ∧ x = z ∧ z + y = −1)
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Naı̈ve SMT Solving (continued)

3) Feed the explanation to the SAT solver:

◦ add the clause (¬a ∨ ¬b ∨ ¬c)

4) Get a model of (a ∧ (b ⇒ c) ∧ d) ∧ (¬a ∨ ¬b ∨ ¬c)

◦ Boolean model: {a,¬b, c, d}
◦ Convert back to arithmetic:

x + y > 0 ∧ ¬(x = z) ∧ z + y = −1 ∧ z > 3t

◦ Check consistency: satisfiable

Conclusion: The original formula is satisfiable
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Improvements to Naı̈ve SMT Solving

Make it incremental

◦ Don’t wait for a full boolean model to check consistency: interleave boolean
propagation and calls to the theory solver

Theory propagation

◦ Example: given partial model {a, d, c} (i.e., x + y > 0, z + y = −1, z > 3t)
linear arithmetic solver can deduce that b must be false
(since Arithmetic |= x + y > 0 ∧ z + y = −1 ⇒ ¬(x = z))

◦ Theory propagation: detect this and assign ¬b in the SAT solver.

Benefit of these improvements: prune the SAT solver search space
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Yices

Yices is SRI’s current SMT solver

◦ Successor of previous systems and prototypes (ICS, Yices 0.1, Simplics)
◦ Follows a long tradition of SRI’s work on decision procedures (Shostak, PVS

decision procedures)

A state-of-the-art SMT solver

◦ Yices won several categories in 2005, 2006, 2007 competition on SMT solving
◦ Uses recent advances in Boolean SAT solving (cf. Chaff, MiniSat, PicoSat)
◦ Can solve very large formulas (100 to 10,000 atoms/variables/terms)
◦ Supports all theories in SMT-LIB and more
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Main Features

Supported Theories

◦ Uninterpreted functions
◦ Linear real and integer arithmetic
◦ Extensional arrays
◦ Fixed-size bit-vectors
◦ Scalar types
◦ Recursive datatypes, tuples, records
◦ Quantifiers and lambda expressions

Other Features

◦ Model generation, unsatisfiable cores
◦ Supports incremental assertions: push, pop, retract
◦ Dependent types (similar to PVS)

8



Computer Science Laboratory, SRI International

Applications of Yices

Backend Solver for the SAL Toolset

◦ Support bounded model checking of finite and infinite state systems:
– Check satisfiability of formulas of the form

I(X0) ∧ T (X0, X1) ∧ . . . ∧ T (Xn−1, Xn) ⇒ P (Xn)

where (X, I, T ) encodes a state-transition system and P is a state property:
X: state variables, I: initialization, T : transition relation
- Related applications: k-induction,test-case generation, planning

Integration to PVS

◦ There is a translation from PVS to Yices (in PVS4.0)
◦ Allows to use Yices as an endgame prover from PVS
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Other Applications

Static Analysis

◦ Extended static checking (e.g., with the Why system)
◦ Symbolic simulation
◦ Support for invariant generation in hybrid systems (Gulwani and Tiwari, 2008)
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Some Limitations of Yices 1

Type System

◦ Dependent subtypes cause problems:
– Type correctness of a formula cannot be established cheaply (if at all)
– Yices behavior on type incorrect formulas is cahotic

API Issues

◦ Yices 1 is mostly intended to be used via the yices executable
◦ Many user want to embed Yices in other system: use it as a library
◦ A Yices library exists but the API is not complete and fragile

Performance Issues

◦ Yices is among the best SMT solvers for arithmetic, arrays, uninterpreted
functions

◦ Not as good for bitvectors and quantifiers
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The Next Yices

Yices 2: complete redesign and new implementation

Goals:

◦ Increase flexibility and usability as a library
◦ Simplify the type system to ensure easy type checking
◦ Maintain or improve performance
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Yices 2 Formulas

Type Systems

◦ Primitive types: Int, Real, Bool, (Bitvector k)

◦ Uninterpreted and scalar types:
◦ Tuple and function types: (τ1 × . . .× τn) and (τ1 × . . .× τn → τ0)

Subtype Relations

◦ Int < Real

◦ If τ1 < σ1, . . . , τn < σn then (τ1 × . . .× τn) < (σ1 × . . .× σn)

◦ If τ0 < σ0 then (τ1 × . . .× τn → τ0) < (τ1 × . . .× τn → σ0)

Terms

◦ Boolean, rational, and bitvector constants, uninterpreted constants
◦ Non-primitive terms: (t1 = t2) (ite c t1 t2) (not t) (or t1 . . . tn)

(f t1 . . . tn) (∀(x1 : τ1, . . . , xn : τn)t) . . .

Type checking is straightforward

13



Computer Science Laboratory, SRI International

Yices 2 Architecture

Solver

SAT
Solver

CORE
(UF Solver)

Arithmetic

Bitvector

Array/Fun

Solver

Solver

DPLL
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Main Components

SAT Solver

◦ Similar to state-of-the-art sat solvers (MiniSat, Picosat)
◦ Extensions for interaction with theory solvers:

– support mapping of boolean variables to atoms
– addition of clauses and boolean variables on the fly
– support for theory propagation and theory conflict
– many configurable parameters controllable via API

Core

◦ Congruence-closure solver for uninterpreted functions and tuples
◦ Ensures consistency between solvers (Nelson-Oppen combination using

interface equalities)
◦ Improvements over Yices 1 core

– More efficient algorithm for equality propagation
– Built-in support for if-then-else and boolean terms
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Theory Solvers

Satellite Solvers

◦ Communicate with SAT solver and Core
◦ Each solver deals with a specific theory:

– Arithmetic solver
- The default solver uses the Simplex method
- Optionally, it can be replaced by other solvers (based on the

Floyd-Warshall algorithm) for difference logic
– Bitvector solver

- Bitvector arithmetic: bit-blasting + equality reasoning
– Array/function theory solver

- Extensionality
- Array updates
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Improved Performance (UF Benchmarks)
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Improved API

Complete API

◦ All functionalities supported by the yice2 solver are also available via a C-API
◦ Supports multiple independent contexts (in addition to push/pop)
◦ Increased flexibility and customization:

– Heuristics parameters can be modified
– The solver architecture is configurable (e.g., which arithmetic solver to use,

whether the Core is needed or not, etc.)
– Better support for model construction
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Future Work

Short Term Plans

◦ Yices 2 still under development
◦ Our plan is to enter Yices 2 in this year’s SMT Competition
◦ Release Yices 2 later this year

Future Extensions

◦ Support non-linear arithmetic
◦ Revisit the quantifier matching algorithms and heuristics
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Conclusion

SMT solvers enable new approaches to verification:

◦ Bounded model checking requires powerful solvers capable of handling large,
propositionally complex formulas

Yices 1 is one of the most efficient SMT solvers available

With Yices 2 we hope to continue improving:

◦ Easier to use: simpler language, correct typechecking, increased flexibility
◦ Embeddable in other software: improved API and library
◦ Better performance

Visit our website: http://yices.csl.sri.com/
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